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Abstract: Humanoid robots are complex systems that require considerable processing power. This applies both for low-
level sensorimotor loops, as well as for image processing and higher level deliberative algorithms. We present
the distributed architecture DISTAL which is able to provide the processing power of large neural networks
without relying on a central processor. The architecture successfully copes with runtime-metamorphoses of
modular robots, such as the humanoid robot MYON, the body parts of which can be detached and reattached
during runtime. We detail the implementation of DISTAL on 32-bit ARM RISC processors, describe the
underlying neural byte-code (NBC) of neurons and synapses, and also depict the graphical application software
BRAINDESIGNER which releases the user from program coding.

1 INTRODUCTION

The most sophisticated autonomous robot can
only be as useful as its underlying control architec-
ture, which conducts everything from low-level sen-
sorimotor loops to visual processing and highest level
behavioral decision making. Usually, hybrid architec-
tures are used to cope with the different constraints,
e.g. simple, but highly reactive reflex loops for mo-
tion control, versus non-time-critical processing of
complex and large decision trees.

There is a long history of architectures for robot
control and abstract reasoning alike. A well-known
early architecture, e.g., is SOAR, as described in
(Laird et al., 1987). SOAR can be considered a set of
principles and constraints on processing, for the con-
struction of cognitive models. It is focusing rather
on problem solving and learning than on highly reac-
tive robot control. Ten years later then came, amongst
others, AuRA (Arkin and Balch, 1997) and SAPHIRA
(Konolige and Myers, 1998), the latter already being
especially designed for autonomous mobile robots.
Some architectures have been application oriented,
like BERRA for service robots, as described in (Lind-
strom et al., 2000). An evaluative survey of architec-
tures for mobile robots up to the year 2003 is given in
(Orebäck and Christensen, 2003).

Along with the continuous increase of process-
ing power, versatile approaches appeared which today

can be run on various robot platforms, even though
their underlying processor hardware differs consider-
ably. A widely-used open-source framework is URBI
(Baillie, 2005), which can be equally well used to
control Sony’s AIBO, Aldebaran’s NAO, or LEGO’s
Mindstorm NXT robots – just to name a few. Unfortu-
nately, even today, URBI still depends on the presence
of a single processor on-board a robot, since URBI
always only outputs a single executable. Architec-
tures which are state-of-the-art (Amoretti and Reg-
giani, 2010; Heintz et al., 2010; Hawes and Wyatt,
2010; Balkenius et al., 2010; Mitchinson et al., 2010;
Martínez-Barberá and Herrero-Pérez, 2010) mostly
support and encourage distributed processing. An up-
to-date survey is given in (Hülse and Hild, 2010).

In the paper at hand, we introduce the distributed
architecture for large neural networks DISTAL, which
goes beyond present architectures since it supports
runtime-metamorphoses of the robot on which it is
run. As has been shown in (Hild, 2007), purely neural
control of a complex humanoid robot does not nec-
essarily result in limited behavioral capabilities. In
the rest of the paper we will illustrate the advantages
of DISTAL regarding its ease of use and implementa-
tion. We first present the experimental infrastructure
and explain the system architecture of the modular hu-
manoid robot MYON. Next, we detail the implemen-
tation of DISTAL and the corresponding application
software. Finally, a whole-system example is given.



2 EXPERIMENTAL
INFRASTRUCTURE

When designing a control architecture, one has to
respect not only the computational paradigm, but also
the potential target platforms and use cases. DISTAL
has been devoted to large neural networks that are
meant to be run on distributed processing nodes in
varying scientific experimental contexts.

2.1 The Modular Robot MYON

Although DISTAL has successfully been run on differ-
ent robot platforms, we will focus on the robot MYON
in what follows, since this robot has been designed
with the DISTAL architecture in mind and therefore
reinforces the main concepts.

The robot MYON is shown in Figure 2. All in all,
it is 1.25 m tall, weighs 15 kg, and consists of six body
parts (head, torso, arms, and legs) which are fully au-
tonomous in terms of energy supply and processing
power. DISTAL respects this architecture and supports
runtime-metamorphoses, i.e., reconfigurations of the
overall body plan. The robot exhibits 32 degrees of
freedom and 48 actuators. Joints which need a large
amount of torque, e.g. the knee, are driven by several
actuators in parallel, using series elasticities. Besides
the camera, there are over 200 sensor values of the
following types: joint angle, motor angle, motor cur-
rent, motor temperature, acceleration force, contact
force, battery voltage. The mechanical construction,
energy supply concept and other hardware aspects are
detailed in (Hild et al., 2011b).

Figure 1: All body parts of the robot MYON can be de-
tached and reattached during runtime. Here, the head has
been replaced by the robot’s left arm.

Figure 2: The modular humanoid robot MYON. Left: Im-
age of the functional robot including the exoskeleton shells.
Right: Overview of the robot’s detachable body parts.

2.2 Use Cases and Operational Modes

Aggregating the experiences with former robotic plat-
forms over the years (Spranger et al., 2010), an assort-
ment of typical use cases could be identified and taken
into account, both for the design of the robot MYON
and the DISTAL architecture.

The most predominant experimental infrastruc-
ture obviously consists of a fully or partly assembled
robot, which is connected to a PC. Highest flexibil-
ity is achieved when the PC is within the sensorimo-
tor loop, so structural changes, as well as parameter
changes, can be realized on the fly. Since the robot’s
processing power is not used, the corresponding oper-
ating mode is called transparent mode. The applica-
tion software will have to cope with unforeseen robot
morphologies, e.g. with the one shown in Figure 1.

When experimenting with self-explorative algo-
rithms cables may hinder free movements. Thus, one
needs to be able to deploy the neural network at hand
permanently to the robot’s processing nodes. This
process we call deployment. After deployment, it
should still be possible to monitor and log sensorimo-
tor data as well as internal behavioral states (called
sniffing). Also helpful, especially during presenta-
tions, are standard audio-visual signals which are pro-
vided by the robot in stand-alone scenarios, i.e. with-
out any PC. Surely, this also has to be supported by
DISTAL. Often, program-debug cycles hinder experi-
menting, so a graphical network editor is wishful.



3 SYSTEM ARCHITECTURE

The humanoid robot MYON exhibits several
unique architectural characteristics. Here, we just
give a brief summary of the processing nodes and
the communication bus between them. An overall
diagram of the system architecture is given in Fig-
ure 3. All processing nodes are connected using the
so-called SPINALCORD, which is a multi-core bus
that transfers energy, sensorimotor data at a rate of
4.5 MBaud, and a control signal which is used to
switch the robot on and off.

3.1 Processing Node ACCELBOARD3D

Data processing is predominantly done by 25 process-
ing nodes, which are distributed all over the robot’s
body. They are called ACCELBOARD3D, since they
also possess a 3-axis acceleration sensor, despite the
Cortex-M3 ARM RISC processor running at 72 MHz.

Up to four actuators are connected to each AC-
CELBOARD3D. The actuators are all of the type
Robotis RX-28. Whenever several actuators drive the
same joint, all of them are connected to the same AC-
CELBOARD3D. Also, the corresponding sensory data
(angular sensors of the joint and all motors; motor
current sensors) is sent to the same processing node,
so local processing of antagonistic control paradigms
can easily be realized. Those situations are automati-
cally detected by the application software BRAINDE-
SIGNER during the deployment process.

Each ACCELBOARD3D also exhibits a mode but-
ton and two status LEDs. This is extremely helpful for
diagnosis, inspection of internal states which would
otherwise be hidden to the user, and switching of op-
erational modes like start, stop and the like.
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Figure 3: System architecture of the robot MYON. Com-
ponents within each body part are connected via the so-
called SPINALCORD (SC), whereas the body parts are con-
nected by the EXTENDEDSPINALCORD (XSC) which in-
cludes lines for energy transfer.
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Figure 4: On the one hand the BRAINMODULE is just an-
other processing node of the DISTAL architecture, but on
the other hand it possesses considerably more processing
power than an ACCELBOARD3D. This is needed for the
audio-visual processing inside the robot’s head.

3.2 Processing Node BRAINMODULE

As the name already indicates, the BRAINMODULE
is a special processing node inside the robot’s head.
When sniffing the SPINALCORD, the BRAINMOD-
ULE is indistinguishable from an ACCELBOARD3D,
but as can be seen in Figure 4, the BRAINMOD-
ULE possesses enough processing power to do serious
audio-visual processing, e.g., a Hough-Transform.

Along with the digital camera interface, there is
a special analog video mixer which allows for video
keying and overlaying. This is helpful not only dur-
ing presentations, but also for standard lab situations,
where one wants to see the original camera image
with the processed visual data superimposed. A sim-
ple overlay, e.g., shows a cross hair which indicates
the object that the robot is currently investigating.
Since this is all done fully synchronously, the re-
searcher can detect the slightest deviation from the
expected behavior. When using the wireless interface
to monitor all data on a PC, the resultant quality and
reactivity is by far lower, due to the restricted band-
width.

Configuration of the XILINX Virtex-4 field pro-
grammable gate logic (FPGA) is done by an 8-bit mi-
crocontroller via a standard MiniSD-Card that con-
tains the necessary FPGA bitfile. Future implemen-
tations may also use the MiniSD-Card to log sensori-
motor and visual data during autonomous stand-alone
scenarios without the use of a PC.



4 IMPLEMENTATION

The DISTAL architecture is a realtime framework
in the hard sense, i.e., at any time data processing is
bound within prescribed time limits. This can eas-
ily be monitored using a standard oscilloscope which
is hooked to the SPINALCORD. In order to achieve
highest performance, we introduced a neural bytecode
(NBC) which almost directly translates into compact
machine code for the 32-bit ARM RISC processor of
the ACCELBOARD3D. In the following, we address
these two main concepts which constitute DISTAL.

4.1 SPINALCORD

All processing nodes communicate with each other
one hundred times a second using the SPINALCORD.
Therefor, each participant has a designated time slot,
during which it sends its data. For the rest of the com-
munication time, it receives the data from all the other
connected participants. The starting time of a slot is
relative to the starting time of the participant with the
lowest ID, which has the role of a master and triggers
the 10 ms pattern. The whole timing is shown in Fig-
ure 5.

The communication on the robot MYON lasts
3.36 ms, which leaves 6.64 ms for the calculation of
neural networks and the acquisition of sensor values
before the next slot starts. Up to 32 participants are
intended, whereof six are the energy modules of the
six body parts, which have a shorter time slot than the
others, because they only disclose the charge status of
the batteries. The slots of all other participants last
125 µs each, during which they send 27 words (16-bit
values). The first word is reserved for a synchroniza-
tion value (0x5555), and five bits of the second word
contain the ID of the participant.

As already mentioned before, the morphology of
the robot can change, and therefore new participants
can join during runtime. A new participant initially
listens some hundred milliseconds and then joins the
communication at the correct time. It is even possi-
ble that the new ID is lower than the ID of the current
master, which leads to a new master. The old one
automatically becomes a slave when it receives data
from a new master before its own slot. If the mas-
ter is removed, the second lowest ID will recognize
this situation, become the master and the communica-
tion continues seamlessly. If the BRAINMODULE is
connected to the SPINALCORD, it is automatically the
master because it has the lowest possible ID, namely
zero. It gradually synchronizes the SPINALCORD
to the 50 Hz signal of the camera, leading to time-
consistent sensory data (regarding SPINALCORD and

camera data). It is possible to shift the communica-
tion time by nearly 125 µs per 10 ms slot by starting
the communication later, near the end of the slot. Be-
cause of a 2.5 µs dead time at the beginning of each
slot, moving backwards is possible, too.

The 25 words after the synchronization word and
the ID contain sensory data and designated fields for
motor control voltages, as well as free slots, which
can be used by neural networks for the communica-
tion between different processing nodes.

4.2 Neural Byte-Code (NBC)

A neural network executed by the ACCELBOARD3Ds
consists of several calculation units. On the one hand
code representing the network topology, and on the
other hand the code of the calculation units, is com-
piled for the ARM processor technology used on the
processing nodes of MYON.

For each unit, a so-called preamble is compiled,
which fills the registers of the processor with val-
ues according to the network topology. After that, a
branch is taken to the compiled code of the unit (a
snippet). The code for each snippet uses the given
values to calculate new output values. In addition to
these values, two free registers are available for tem-
porary calculations. The commands of the NBC are
similar to those available in the ARM instruction set,
e.g., a command for signed saturation exists. A sam-
ple code for a weighted synapse reads as follows
mul V0, Input, w
write Output, V0

where the first line multiplies the input value with a
parameter w and puts the result into the register V0
(which is R8 on the ARM processor), whereas the
second line writes this register value to the output.

Each of the calculation units consists of inputs and
outputs, parameters (constant for each instance) and
internals (non-volatile values, which are not accessi-
ble from outside). Outputs and internals together are
called locals and are represented as a large array in
the RAM of the processor (see Figure 6); parameters
are put directly into the unit’s preamble.

The calculation order of the units is important in
time-discrete neural networks. If a neuron would be
calculated before the output value of a synapse is up-
dated, one would get a different behavior than vice
versa. Therefore all snippets are executed in a given
order. This is simply done by ranking: Snippets start-
ing with "200:" are calculated before snippets starting
with "300:". The calculation order of snippets with
the same number is undefined. A calculation mod-
ule can contain multiple snippets executed at different
times. Snippets using a time indicator lower than 100
are executed only once at the beginning, thus enabling
initialization code.
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Figure 5: Timing layout of the robot MYON for a 10 ms time slot: During the first 3.36 ms all data is communicated between
up to 32 processing nodes (SpinalCord Communication), than there are almost 6 ms for motor control and calculation of the
neural network. At the end of the time slot, immediately before communication takes place again, new sensor values are
acquired (s). The SpinalCord Communication of MYON consists of three different kinds of participants. Every data chunk
which is communicated by the BRAINMODULE or an ACCELBOARD3D is 27 words long and needs 125 µs to be transfered
over the SPINALCORD, whereas the data chunks of the ENERGYMODULES are only three words long and therefore need only
18.33 µs to be transfered.
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5 APPLICATION SOFTWARE
AND EXAMPLE

Every control architecture has to stand the test in
real-world scenarios. DISTAL was used extensively
on the robot MYON. The software BRAINDESIGNER
was developed to create artificial neural networks for
DISTAL using a graphical interface. Besides other
tasks, hand-eye-coordination was successfully imple-
mented using BRAINDESIGNER and DISTAL.

5.1 BRAINDESIGNER

The software BRAINDESIGNER offers a graphical in-
terface for assembling neural networks on a PC, us-
ing the mouse. Several types of nodes (neurons) and
directed edges (synapses) are available to assemble
a network. New types of neurons and synapses can
be created, which contain executable code (Neural
ByteCode) that allows for the implementation of any
kind of neural calculation or local learning process.
Synapses are independent from neurons – they are
called units, too. Assembled networks can be encap-
sulated and included into other networks, enabling the
user to create cascaded network hierarchies.

By using special input and output nodes within the
software BRAINDESIGNER, it is possible to read and
write values to and from fields in the SPINALCORD.

Figure 7: The software BRAINDESIGNER, with a simple
neural network loaded (c). Output values can be shown over
time (b) or against each other (a). At the bottom (d), param-
eter changes of included units and structures are possible.
(e) Library of units and structures. (f) Parameters can be
changed during runtime in transparent mode, using graphi-
cal sliders.

Figure 8: Myon sitting at a table and performing a gripping
task using hand-eye coordination. In the lower right the im-
age of the robot’s camera is shown. The recognized object
is shown using a cross hair.

Since all sensory data is available in the SPINAL-
CORD, and all values needed to drive actuators are
taken from the SPINALCORD, this is fully sufficient.

The user can choose from a wide range of plug-
ins for different robots which are using the DISTAL
architecture. For the robot MYON, the two operat-
ing modes transparent mode and deployment mode
are available.

5.2 Whole-System Example

A hand-eye-coordination task was successfully im-
plemented using the BRAINDESIGNER software.

In this scenario, the robot is sitting at a table and
grips an object (e.g., in order to put it onto another
object). The object recognition is done by the FPGA
in the BRAINMODULE, using the data from the con-
nected camera. A simple color marker is used for this
purpose. In the same way, the position of the robot’s
gripper is identified.

Using quadric-representing neurons (Hild et al.,
2011a) the arm is kept in a plane just above the table,
while moving the elbow joint. The shoulder joints are
used to navigate the hand into the direction of the ob-
ject to grip. No world model is needed, as the position
data of the objects is updated at a rate of 50 Hz.

If either the object, or the hand is not visible in the
field of view, the robot’s head starts to move in search
for the objects.



6 CONCLUSION

We presented the distributed control architecture
DISTAL along with the modular humanoid robot
MYON, which seamlessly supports DISTAL. Having
addressed important use cases of different experimen-
tal settings, we detailed the mechanisms of DISTAL
which allow for the specific characteristics of those
settings. Most important, and at the same time unique
amongst humanoid robot platforms, are the ability of
stand-alone operation of single limbs and the enabling
of runtime-metamorphosis.

Using the appealing computational simplicity of
time-discrete neural networks (the complexity of
which being only bound by the number of processor
nodes), we could illustrate that the proposed neural
byte-code (NBC) is suitable for graphical editing of
neural networks, and at the same time also almost di-
rectly translates into compact machine code for the
32-bit ARM RISC processors.

Not only did we present a theoretical framework
and a corresponding computational infrastructure,
but also the fully functional robot platform MYON,
the accompanying application software BRAINDE-
SIGNER, and a whole-systems example of the robot
which is able to autonomously locate, grip and relo-
cate objects by purely neural control paradigms which
have been realized with DISTAL. Further research
will focus on adaptive neurons and synapses, learn-
ing rules, and networks for self-explorative behavior.
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